Symulowanie opóźnienia Shapiro
Z Ogólnej Teorii Względności wynika dużo ciekawych efektów. Jednym z nich jest, znajdujące się w tytule tej notki, tzw. opóźnienie Shapiro.
O co chodzi? Ogólna Teoria Względności przewiduje m.in. fascynujące zjawisko wolniejszego upływ czasu w pobliżu masywnych ciał. Oznacza to np., że jeśli spotkacie się z sąsiadem wieczorem przy wejściu do bloku, pójdziecie spać do swoich mieszkań, po czym spotkacie się znowu przy wejściu rano - jeśli mieszkasz na parterze, a sąsiad na 10 piętrze, to sąsiad w ciągu nocy zestarzeje się bardziej, niż Ty. Na Ziemi, przy takich różnicach wysokości, różnice w upływie czasu są minimalne - w przykładzie z sąsiadem nie większe niż kilkadziesiąt bilionowych części sekundy - ale są.
Te różnice w upływie czasu da się zmierzyć w niektórych okolicznościach, i fizyk Irwin Shapiro wskazał jeden możliwy sposób. Wykorzystuje on najmasywniejsze ciało w Układzie Słonecznym - Słońce. Wysłana z Ziemi fala elektromagnetyczna, przelatująca w pobliżu Słońca, znajduje się w obszarze, w którym czas płynie nieco wolniej, niż na Ziemi - w efekcie z Ziemi wygląda to, jakby poruszała się nieco wolniej. Jeśli taka fala po przelocie obok Słońca odbije się od czegoś - np. od innej planety - i wróci na Ziemię, przelatując po drodze obok Słońca jeszcze raz - to okaże się, że zajmie jej to nieco więcej czasu, niż wynikałoby z prostego podzielenia odległości między Ziemią a planetą przez prędkość fali (prędkość światła). Shapiro obliczył, jakiego opóźnienia można się spodziewać, i wyszło mu, że np. jeśli planetą, od której odbiją się fale, będzie Wenus, to opóźnienie może wynieść nawet ponad 200 µs (milionowych części sekundy) - wciąż malutko, ale już do zmierzenia!
I opóźnienie Shapiro faktycznie zmierzono. Wielokrotnie wysyłano z Ziemi wiązkę radarową, która odbijała się od Wenus i wracała na Ziemię, i mierzono dokładnie czas jej przelotu. Uzyskane wyniki były zgodne z przewidywaniami OTW:
Wiadomo wobec tego, że efekt występuje. Jednak jak przystało na porządnego nerda, postanowiłem sprawdzić, czy będę w stanie sam otrzymać poprawne przewidywanie z teorii. W tym celu stworzyłem sobie symulację, której dotyczy ta notka.
(więcej…)