Fizyka

Co jednostajny ruch obrotowy ma wspólnego z ruchem przyspieszonym?

Zaskakująco dużo, zwłaszcza jeśli spojrzeć z punktu widzenia teorii względności. Ale po kolei.

Przyspieszenia w Ogólnej Teorii Względności

Jeśli nie zapomnieliście jeszcze materiału z początków lekcji fizyki, pamiętacie zapewne, jak zdefiniowane jest przyspieszenie - jako zmiana prędkości w czasie. Matematycznie uściśla się to jako pochodną prędkości po czasie i można zapisać: \vec{a} = \frac{d\vec{v}}{dt}. I ta definicja jest świetna, ale w Ogólnej Teorii Względności, jak to zwykle z nią bywa, sprawy nieco się komplikują.

Problem polega na tym, że w kontekście OTW naprawdę niewygodnie operuje się pojęciami, które polegają na jakimś konkretnym podziale czasoprzestrzeni na przestrzeń i czas. Ze względu na to, że czasoprzestrzeń może być krzywa, kierunek który jest czasowy w jednym miejscu może nie mieć żadnego przełożenia na kierunek czasowy w innym miejscu. Często też wygodnie operuje się w abstrakcyjnych układach współrzędnych, które nie mają oczywistych związków z odległościami czy czasem. W związku z tym wielkość, która jest pochodną czysto przestrzennego wektora takiego jak prędkość po wyróżnionej współrzędnej czasowej, nie zawsze jest czymś szczególnie przydatnym.

Dodajmy jeszcze do tego fakt, że w kontekście OTW przyspieszenie pod wpływem grawitacji jest bardziej iluzją niż faktycznym przyspieszeniem, i bałagan urośnie jeszcze bardziej.

Czy istnieje zatem jakaś wielkość pokrewna przyspieszeniu, która nie ma wspomnianych wyżej wad? Otóż istnieje. Ale by ją opisać, potrzebujemy wprowadzić najpierw trochę kontekstu.

(więcej…)

Geodezyjne - od intuicji do równań

Najprostsza geometria, nauczana w szkołach, to tzw. geometria euklidesowa - nazywana tak od Greka, Euklidesa, który w IV w. p.n.e. opisał w swoich "Elementach" jej podstawy. Geometria ta opiera się na pojęciach punktów, prostych i płaszczyzn i wydaje się doskonale odpowiadać naszym codziennym doświadczeniom z różnymi kształtami. A jednak już nawet w naszym bezpośrednim otoczeniu można natknąć się na problemy, do których opisu geometria euklidesowa jest niewystarczająca.

Wyobraźmy sobie na przykład, że jesteśmy pilotami samolotu i mamy za zadanie jak najszybciej dolecieć z Warszawy do San Francisco. Bierzemy mapę świata i korzystając z wyniesionej z geometrii euklidesowej wiedzy, że najkrótsza linia między dwoma punktami to linia prosta, wykreślamy taką linię od Warszawy do San Francisco. Już szykujemy się do wylotu po naszej trasie... ale na szczęście znajomy nawigator uświadamia nas, że wpadliśmy w pułapkę.

Pułapka polega na tym, że powierzchnia Ziemi nie jest płaszczyzną! Mapa, której użyliśmy do wytyczenia trasy po linii prostej, to tylko pewne odwzorowanie powierzchni, która w rzeczywistości jest zbliżona kształtem do sfery. W związku z tym najkrótsza trasa to nie czerwona linia na mapie poniżej, a fioletowa:

Czerwona linia - prosta na mapie łącząca Warszawę i San Francisco. Fioletowa linia to faktycznie najkrótsza trasa.
(więcej…)

Masa relatywistyczna

Kiedy wprowadza się temat Szczególnej Teorii Względności w szkole (o ile się jeszcze wprowadza - nie śledzę zmian w programie), jednym z pojęć, o którym się mówi, jest tzw. "masa relatywistyczna".

Jedną z konsekwencji teorii względności jest to, że im szybciej porusza się ciało, tym trudniej je bardziej rozpędzić, czyli rośnie jego bezwładność. Ponieważ od początku lekcji fizyki mówi się, że miarą bezwładności jest masa, kusi, żeby wytłumaczyć ten efekt wzrostem masy właśnie. Dzieli się wobec tego pojęcie masy na "masę spoczynkową" - masę, którą ciało ma w bezruchu - i "masę relatywistyczną" - czyli masę ciała w ruchu, większą od spoczynkowej. Od razu jeszcze równania robią się ładniejsze, bo kiedy przez m oznaczy się masę relatywistyczną, można zawsze napisać E = mc^2, a pęd wyraża się ciągle znanym z fizyki klasycznej wzorem p = mv (w wersjach z masą spoczynkową pojawia się jeszcze brzydki pierwiastek w mianowniku - zobaczymy to potem). Żyć, nie umierać.

Jeśli śledzicie w internecie artykuły lub dyskusje na temat teorii względności, pewnie nieraz słyszeliście wzmianki o masie relatywistycznej. Często tłumaczy się tym niemożliwość osiągnięcia prędkości światła ("bo masa urosłaby do nieskończoności"), albo czasem ktoś spyta, czy jak ciało się odpowiednio rozpędzi, to może się stać czarną dziurą przez wzrost masy (nie może). Relatywistyczny wzrost masy traktuje się w takich kontekstach jako fakt, pewnik.

Cóż, tym wpisem chciałbym ten stan rzeczy nieco zaburzyć ;) Okazuje się bowiem, że przy bliższym spojrzeniu pojęcie masy relatywistycznej traci wiele swojego uroku. W efekcie fizycy akademiccy raczej tego pojęcia nie używają i można się na nie natknąć właściwie tylko w szkole, w dyskusjach internetowych i w artykułach popularnonaukowych. Przyjrzyjmy się więc dokładniej, co jest tego powodem.

(więcej…)

Symulowanie opóźnienia Shapiro

Fala e-m lecąca z Ziemi do Wenus i z powrotem zwalnia w pobliżu Słońca

Z Ogólnej Teorii Względności wynika dużo ciekawych efektów. Jednym z nich jest, znajdujące się w tytule tej notki, tzw. opóźnienie Shapiro.

O co chodzi? Ogólna Teoria Względności przewiduje m.in. fascynujące zjawisko wolniejszego upływ czasu w pobliżu masywnych ciał. Oznacza to np., że jeśli spotkacie się z sąsiadem wieczorem przy wejściu do bloku, pójdziecie spać do swoich mieszkań, po czym spotkacie się znowu przy wejściu rano - jeśli mieszkasz na parterze, a sąsiad na 10 piętrze, to sąsiad w ciągu nocy zestarzeje się bardziej, niż Ty. Na Ziemi, przy takich różnicach wysokości, różnice w upływie czasu są minimalne - w przykładzie z sąsiadem nie większe niż kilkadziesiąt bilionowych części sekundy - ale są.

Te różnice w upływie czasu da się zmierzyć w niektórych okolicznościach, i fizyk Irwin Shapiro wskazał jeden możliwy sposób. Wykorzystuje on najmasywniejsze ciało w Układzie Słonecznym - Słońce. Wysłana z Ziemi fala elektromagnetyczna, przelatująca w pobliżu Słońca, znajduje się w obszarze, w którym czas płynie nieco wolniej, niż na Ziemi - w efekcie z Ziemi wygląda to, jakby poruszała się nieco wolniej. Jeśli taka fala po przelocie obok Słońca odbije się od czegoś - np. od innej planety - i wróci na Ziemię, przelatując po drodze obok Słońca jeszcze raz - to okaże się, że zajmie jej to nieco więcej czasu, niż wynikałoby z prostego podzielenia odległości między Ziemią a planetą przez prędkość fali (prędkość światła). Shapiro obliczył, jakiego opóźnienia można się spodziewać, i wyszło mu, że np. jeśli planetą, od której odbiją się fale, będzie Wenus, to opóźnienie może wynieść nawet ponad 200 µs (milionowych części sekundy) - wciąż malutko, ale już do zmierzenia!

I opóźnienie Shapiro faktycznie zmierzono. Wielokrotnie wysyłano z Ziemi wiązkę radarową, która odbijała się od Wenus i wracała na Ziemię, i mierzono dokładnie czas jej przelotu. Uzyskane wyniki były zgodne z przewidywaniami OTW:

Wyniki pomiarów opóźnienia Shapiro - maksymalne opóźnienie sięgnęło 180 µs

Wiadomo wobec tego, że efekt występuje. Jednak jak przystało na porządnego nerda, postanowiłem sprawdzić, czy będę w stanie sam otrzymać poprawne przewidywanie z teorii. W tym celu stworzyłem sobie symulację, której dotyczy ta notka.

(więcej…)

Krajobrazy a refrakcja atmosferyczna

Czasem mi się nudzi i wdaję się w dyskusje z różnego rodzaju pseudonaukowcami. Często takie dyskusje są marnotrawstwem czasu, ale czasem da się z nich coś wynieść - w końcu żeby wyjaśnić komuś jasno, czemu jest w błędzie, sam musisz dobrze rozumieć temat. Jak Twoja znajomość tematu jest niewystarczająca do odparcia argumentów przeciwnika, musisz ją pogłębić i tym samym czegoś się uczysz. Tak było w moim przypadku tym razem.

Zaczęło się od pojawienia się na pewnym forum dwóch zwolenników płaskiej Ziemi. Na pierwszy ogień poszły standardowe argumenty, w stylu strefy czasowe, pory roku, zaćmienia, obroty nieba... co tylko może przyjść do głowy. Jak to zwykle w takich sytuacjach bywa, argumenty te zostały zbyte milczeniem lub mocno naciąganymi alternatywnymi wyjaśnieniami. Nie będę wchodził w szczegóły, kto chce to znajdzie propozycje płaskoziemców w internecie.

Ale wiadomo, osoby święcie przekonanej o swojej racji argumentami nie przekonasz, więc dyskusja stała się dość jałowa. Obie strony okopały się na swoich stanowiskach i zaczęło się wałkowanie w kółko tych samych kwestii. Do czasu, aż jeden ze zwolenników płaskiej Ziemi zaczął przedstawiać zdjęcia, jego zdaniem dowodzące, że Ziemia "nie jest kulą o promieniu 6371-6378 km", z opisami dającymi się streścić jako "wyjaśnijcie TO!". No dobrze.

Challenge accepted!

(więcej…)

Szczególna Teoria Względności bez założenia o stałej prędkości światła

Wstęp

Szczególna Teoria Względności, jako mocno sprzeczna z intuicją wyniesioną z codziennego życia, pozostaje dla przeciętnego człowieka tematem nieco magicznym. Wnioski z niej wypływające są tak oddalone od życia, że trudno je do siebie dopuścić jako poprawny opis otaczającego nas świata.

STW poznaje się na lekcjach fizyki w liceum i jej wprowadzenie wygląda tam zwykle mniej więcej tak: pod koniec XIX wieku ludzie zdali sobie sprawę z istnienia fal elektromagnetycznych. Z równań opisujących te fale wynika pewna konkretna prędkość ich rozchodzenia się, oznaczana c i wynosząca ok. 300 000 km/s. Było to o tyle interesujące, że nie wiadomo było, względem czego ta prędkość jest określona. Ponieważ wszystkie znane fale rozchodziły się w jakichś ośrodkach, przyjęto, że także fale elektromagnetyczne posiadają swój ośrodek i nazwano go eterem, a ich prędkość dotyczy ruchu względem niego.

Kiedy już stwierdzono, że eter powinien istnieć, następnym krokiem było wykrycie go. Jednym z pomysłów na zademonstrowanie istnienia eteru było zmierzenie prędkości Ziemi względem niego. Podjęto więc takie próby, jednak nie dały one spodziewanych wyników - wyglądało na to, że Ziemia nie porusza się względem eteru. Było to nieco dziwne, zważywszy że zmienia ona swoją prędkość w ruchu dookoła Słońca, więc nawet jakby spoczywała w jednym momencie, w innym już nie powinna, tymczasem mierzona prędkość była ciągle 0. Próbowano modyfikować koncepcję eteru tak, aby wyjaśnić, czemu mogło wyjść 0 i przeprowadzać bardziej czułe eksperymenty. Jednym z nich był słynny eksperyment Michelsona-Morleya, który jednak, tak jak wcześniejsze eksperymenty, pokazał że prędkość Ziemi jest zerowa.

Naukowcy byli dość zdezorientowani tymi wynikami. Wyglądało na to, że prędkość światła względem różnych obserwatorów się nie zmienia, niezależnie od ich ruchu, co było dość bezprecedensowe. Żeby dokładniej zobrazować, co w tym dziwnego, wyobraźmy sobie, że stoimy na skrzyżowaniu w samochodzie, a przed nami stoi jeszcze jeden samochód. Gdy zapala się zielone światło, samochód przed nami rusza i rozpędza się do 15 m/s, czyli w ciągu każdej sekundy będzie się od nas oddalał o 15 m. Chwilę potem ruszamy my. Gdy rozpędzimy się do 5 m/s, spodziewamy się, że samochód przed nami będzie oddalał się od nas już tylko o 10 m co sekundę, ale gdy to sprawdzamy, ze zdumieniem odkrywamy, że nadal ucieka nam z prędkością 15 m/s. Przyspieszamy do 10 m/s - a on nadal oddala się co sekundę o 15 m. Przyspieszamy bardziej i bardziej, lecz wciąż nie możemy zacząć doganiać samochodu przed nami, mimo że nasz znajomy policjant stał z radarem na poboczu i powiedział nam, że jego prędkość to wciąż tylko 15 m/s. Otóż światło wydawało się zachowywać właśnie jak taki niecodzienny samochód.

Na początku XX wieku różni ludzie proponowali kolejne wyjaśnienia, a wśród nich Lorentz, Poincare i wreszcie Einstein. Ten ostatni w 1905 roku przedstawił opis znany dziś jako Szczególna Teoria Względności, oparty na 3 założeniach:

  1. (Czaso)przestrzeń jest jednorodna i izotropowa, tj. nie ma we Wszechświecie wyróżnionych punktów ani kierunków.
  2. Nie ma wyróżnionych układów inercjalnych, w każdym z nich prawa fizyki są takie same - to jest tzw. zasada względności Galileusza.
  3. Prędkość światła jest taka sama we wszystkich układach odniesienia - wniosek z eksperymentu Michelsona-Morleya.

Eter przestał być wobec tego potrzebny - od tej pory c było po prostu prędkością uniwersalną, niezależną od tego, kto ją mierzy. Przy okazji płyną z tego różne niezwykłe wnioski, takie jak wolniejszy upływ czasu u poruszających się obserwatorów czy skracanie się ciał w ruchu.

Zostaje tu jednak pewna luka - można się kłócić, i niektórzy ludzie rzeczywiście to robią, że trzecie założenie nie jest wystarczająco udowodnione. Eksperyment Michelsona-Morleya mógł być za mało dokładny lub mógł dać zerowy wynik w pewnych szczególnych okolicznościach, mimo że prędkość światła nie jest stała. Stąd STW może być (a wg niektórych po prostu jest) nieprawdziwa.

Wszystko to prawda, ale mało kto zdaje sobie sprawę, że to trzecie założenie wcale nie jest potrzebne do otrzymania STW. Zamierzam tutaj pokazać, jak to możliwe.

(więcej…)